Cobalt-doped WSe2@conducting polymer nanostructures as bifunctional electrocatalysts for overall water splitting

Sadik Cogal, Gamze Celik Cogal, Matej Mičušík, Mário Kotlár, Maria Omastová

In: International Journal of Hydrogen Energy, (2023)

https://doi.org/10.1016/j.ijhydene.2023.09.002

Abstract

Designing of high-performance, low-cost, and nonprecious metal-based bifunctional electrocatalysts is highly significant for the development of water splitting process and expanding the practical application of green hydrogen production. Transition metal dichalcogenides (TMDs) with intrinsic physical and chemical properties have been considered potential catalytic materials for electrode fabrication. However, it has remained challenging to develop TMD catalysts that have bifunctional properties for overall water splitting. Herein, WSe2, as a typical representative of TMDs, was utilized to design electrocatalysts using polypyrrole (PPy) or polyaniline (PANI) as a conducting polymer (CP) and cobalt doping. A facile hydrothermal preparation of WSe2 in the presence of CP enabled the construction of cobalt-doped WSe2@CP electrocatalysts. Morphological analysis indicated that the CP played an important role as a conductive template to enhance the distribution of WSe2 nanosheets, leading to higher surface area. In addition, cobalt doping led to the formation of defect structures and boosted the electrocatalytic activities of the catalysts for oxygen evolution reaction (OER).