Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir-Blodgett Thin Films

STANKOVIČ, Nenad K – BODIK, Michal – ŠIFFALOVIČ, Peter – KOTLÁR, Mário – MICUŠÍK, M. – ŠPITÁLSKY, Zdenko – DANKO, Martin – MILIVOJEVIČ, Dušan D. – KLEINOVÁ, Angela – KULBAT, Pavel – CAPÁKOVÁ, Zdenka – HUMPOLIČEK, Petr – LEHOCKY, Marian – MARKOVIČ, Biljana – MARKOVIČ, Zoran

In ACS Sustainable Chemistry and Engineering. Vol. 6, iss. 3 (2018)

https://doi.org/10.1021/acssuschemeng.7b04566

Abstract

Inimitable properties of carbon quantum dots as well as a cheap production contribute to their possible application in biomedicine especially as antibacterial and antibiofouling coatings. Fluorescent hydrophobic carbon quantum dots are synthesized by bottom-up condensation method and used for deposition of uniform and homogeneous Langmuir–Blodgett thin films on different substrates. It is found that this kind of quantum dots generates singlet oxygen under blue light irradiation. Antibacterial and antibiofouling testing on four different bacteria strains (Escherichia coliStaphylococcus aureusBacillus cereus, and Pseudomonas aeruginosa) reveals enhanced antibacterial and antibiofouling activity of hydrophobic carbon dots thin films under blue light irradiation. Moreover, hydrophobic quantum dots show noncytotoxic effect on mouse fibroblast cell line. These properties enable potential usage of hydrophobic carbon quantum dots thin films as excellent antibacterial and antibiofouling coatings for different biomedical applications.