Electrochemical modified Pt nanoflower @ rGO for non- enzymatic electrochemical sensing of glucose

Saravanan Gengan, R.M. Gnanamuthu, Sanjay Sankaranarayanan, Venumbaka Maneesh Reddy, Bhanu Chandra Marepally, Ravi Kumar Biroju

In: Sensors and Actuators A: Physical, Volume 353, (2023)

https://doi.org/10.1016/j.sna.2023.114232

Abstract

Since lower danger of biorecognition element degradation, enzymes-less glucose have the potential for more reliable in vivo activity, but it suffers due to lack of linear response and poor selectivity. We made attempt to improve selectivity, linear response and stability, environmentally benign electrochemical method adopted to fabricate Pt nanoflowers (PtNF) anchored on rGO modified GCE (PtNF-rGO/GCE). The PtNF-rGO/GCE electrode demonstrated good glucose electrooxidation in alkaline solution, with a linear range, sensitivity and detection limit are up to 3.5 mM, 335.5 μA mM−1 cm−1 and 53 μM (S/N = 3) respectively. The PtNF-rGO/GCE electrode is not only selective also inhibit interfering molecules like uric, dopamine, ascorbic acid. This allows for broadly sensitive, work at low-potential, stable, and quick glucose current detection, which is capable for the expansion of non-enzymatic glucose detectors.