Category: Articles

Substrate dependent epitaxy of superconducting niobium nitride thin films grown by pulsed laser deposition

T. Roch, M. Gregor, S. Volkov, M. Čaplovičová, L. Satrapinskyy, A. Plecenik

Applied Surface Science, Volume 551, 2021, 149333

https://doi.org/10.1016/j.apsusc.2021.149333

Abstract

Niobium nitride (NbN) has suitable mechanical properties for application as protective coatings in mechanical engineering, and also its superconductivity can be utilized in thin film devices for sensorics or in combination with ferromagnet in spintronics. Long-range superconducting proximity effect at the heterostructures with a weak ferromagnet can be used for generation of spin-polarized current. For any operational heterostructure application the high quality NbN thin films need to be prepared. In this work we have investigated impact of the substrates on the structure and preferential orientation of niobium nitride thin films fabricated by pulsed laser deposition at 600 °C on Si (0 0 1), MgO (0 0 1), C-plane and R-plane Al2O3 substrates. Growth parameters have been tuned in order to obtain single superconducting δ-NbN phase. Microstructure was analyzed by X-ray diffraction and transmission electron microscopy. Si substrate does not induce the film preferential orientation. Films on MgO are epitaxial (0 0 1) oriented. Films on R-Al2O3 show (1 3 5) orientation with twinned crystallites on the lower symmetry substrate surface. The (1 1 1) epitaxial growth with the largest crystallites and their smallest tilting was achieved on C-Al2O3 substrate leading to the best superconducting properties.

Incorporation mechanism of tungsten in W-Fe-Cr-V-bearing rutile

MAJZLAN, Juraj – BOLANZ, Ralph – GÖTTLICHER, Jörg – MIKUŠ, Tomáš – MILOVSKÁ, Stanislava – ČAPLOVIČOVÁ, Mária – ŠTEVKO, Martin – RÖSSLER, Christiane – MATTHES, Christian

In American Mineralogist. Vol. 106, (2021)

https://doi.org/10.2138/am-2021-7653

Abstract

Rutile is a common mineral in many types of ore deposits and can carry chemical or isotopic information about the ore formation. For closer understanding of this information, the mechanisms of incorporation of minor elements should be known. In this work, we have investigated natural rutile crystals with elevated concentrations of WO3 (up to 17.7 wt%), Cr2O3,tot (7.5), V2O3,tot (4.1), FeOtot (7.3), and other metals. X-ray absorption spectroscopy (XAS) of rutile at the Fe K, Cr K, V K, and W L1 and L3 edges shows that all cations are coordinated octahedrally. The average oxidation state of V is +3.8, and that of Cr is near +4. Shell-by-shell fitting of the W L3 EXAFS data shows that W resides in the rutile structure. Raman spectroscopy excludes the possibility of hydrogen as a charge-compensating species. High-resolution TEM and electron diffraction confirm this conclusion as the entire inspected area consists of rutile single crystal with variable amounts of metals other than Ti. Our results show that rutile or its precursors can be efficient vehicles for tungsten in sedimentary rocks, leading to their enrichment in W and possibly later fertility with respect to igneous ore deposits. Leucoxene, a nanocrystalline mixture of Ti and Fe oxides, is an especially suitable candidate for such a vehicle.

Ce ion surface-modified TiO2 aerogel powders: a comprehensive study of their excellent photocatalytic efficiency in organic pollutant removal

Thirunavukkarasu Guru Karthikeyan, Monfort Olivier, Motola Martin, Motlochová Monika, Gregor Maroš, Roch Tomáš, Čaplovicová Maria, Lavrikova Aleksandra Y., Hensel Karol, Brezová Vlasta, Jerigová Monika, Šubrt Ján, Plesch, Gustáv

New J. Chem., 2021, 45, 4174-4184

https://doi.org/10.1039/D0NJ05976E

Abstract

Titanium dioxide aerogel (TiAP) powders were prepared by lyophilization of peroxo-polytitanic gels followed by annealing at 800 °C to obtain an anatase structure. The surface modification of TiAP was performed for the first time by low amounts of Ce ions (in the range of 0.0025 to 0.025 wt%) using a wet impregnation method. The photocatalytic activity of the aerogel samples was investigated for the removal of different organic pollutants (i.e., Rhodamine B, phenol and caffeine) and the results were compared with the reference P25. Both TiAP and Ce ion surface-modified TiAP (Ce/TiAP) have exhibited better degradation efficiencies for the removal of pollutants than P25, especially for Ce/TiAP with an enhancement in the degradation efficiencies of +18% and +37% for the removal of caffeine and Rhodamine B, respectively. These results have been partly explained by the high active surface area of Ce/TiAP compared to TiAP as well as its better photoelectrochemical properties which have shown, for instance, ∼10% increased incident photon-to-electron conversion efficiency at 360 nm. Interestingly, the energetic position of the valence band maximum of Ce/TiAP is shifted from 3.2 eV to 2.8 eV (compared to TiAP), thus improving the generation of reactive oxygen species (ROS), especially hydroxyl radicals. Indeed, the presence of HO˙ is confirmed by electron paramagnetic resonance, and fluorescence spectroscopy and their photoinduced generation are enhanced in the case of Ce/TiAP. Finally, the surface modification of TiAP by cerium ions led not only to better photoinduced properties, thus limiting the electron–hole pair recombination, but also to the improvement of ROS generation via different plausible mechanisms.

Thermally induced structural evolution and age-hardening of polycrystalline V1–xMoxN (x ≈ 0.4) thin films

Marián Mikula, Stela Uzon, Tomáš Hudec, Branislav Grančič, Martin Truchlý, Tomáš Roch, Peter Švec, Leonid Satrapinskyy, Mária Čaplovičová, Grzegorz Greczynski, Ivan Petrov, Magnus Odén, Peter Kúš, Davide G. Sangiovanni

Surface and Coatings Technology, Volume 405, 2021, 126723

https://doi.org/10.1016/j.surfcoat.2020.126723

Abstract

Rocksalt-structure (B1) (V,Mo)N alloys are inherently hard and tough ceramics. However, the mechanical properties and thermal stability of (V,Mo)N solid solutions at temperatures ⪆ 700 °C of relevance for practical applications have not been previously investigated. In this work, we synthesize single-phase B1 polycrystalline V0.57Mo0.43N0.95 coatings to investigate the effects induced by temperature on the nanostructural evolution and hardness (H) of the material. Nanoindentation measurements show that the as-deposited film (H = 23 ± 3 GPa) becomes ≈30% harder (up to 31 ± 2 GPa) upon annealing at 730 °C. Experimental characterization and analyses, based on dispersive X-ray spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), reveal that the age-hardening effect originates from decomposition of the solid solution into coherent strained cubic VN-rich/MoN-rich domains. The experimental results are complemented by the composition/temperature (V,Mo)N phase diagram – constructed upon ab initio molecular dynamics free-energies – which indicates that the separation observed in the solid solutions is of spinodal nature. Films annealed at temperatures exceeding 850 °C undergo structural coarsening, with formation of hexagonal MoxNy and cubic VN phases, which cause a decrease in hardness to ≈22 GPa. Our present findings indicate that (V,Mo)N coatings may offer outstanding mechanical performances during operation at elevated temperatures.

ZnO nanoparticles as photodegradation agent controlled by morphology and boron doping

ZnO nanoparticles as photodegradation agent controlled by morphology and boron doping

Daniel Furka, Samuel Furka, Mira Naftaly, Erik Rakovský, Mária Čaplovičová, Marián Janek

Catal. Sci. Technol., 2021,11, 2167-2185

https://doi.org/10.1039/D0CY01802C

Abstract

Photolytic degradation of model dyes on pure and boron-doped zinc oxide (ZnO) nanoparticles with pseudohexagonal or elongated spindle-like morphology was investigated. ZnO nanoparticles were prepared by spray-assisted co-precipitation solvothermal synthesis. The bandgap (Eg) of pure ZnO was decreased by boron doping. The prepared nanoparticles were tested for their photocatalytic activity by decomposition of different organic dyes, using phloxine, oxazine and rhodamine as test substances simulating environmental pollutants. The photolysis experiments were done in a 3D printed photoreactor using a photodiode with a wavelength of 365 ± 5 nm as a narrow-line radiation source. The observed first-order reaction kinetics revealed that higher reaction rates were achieved on pseudohexagonal nanoparticles. Increasing the boron content led to accelerated photolysis rates. A significant linear correlation was observed between the optical bandgap energy Eg and the residual dye concentration remaining after 6 hours from the start of the reaction. It was found that ZnO particles with pseudohexagonal morphology decompose organic dyes faster than elongated spindle-like particles, indicating dependence on the surface area as determined by BET analysis. Interestingly, the residual dye concentration varied more strongly with doping when elongated spindle-like nanoparticles were used. It was shown that the efficiency of a photolysis reaction occurring on a solid oxide/solution interface is affected by the crystallographic plane on which it takes place.

Polarization dependent photoluminescence and optical anisotropy in CuPtB-ordered dilute GaAs1-xBi xalloys

PAULAUSKAS, Tadas – ACEECHAVIČIUS, Bronislovas – KARPUS, Vytautas – JOČIONIS, Lukas – TUMĖNAS, Saulius – DEVENSON, Jan – PAČ̌EBUTAS, Vaidas – STANIONYTE, Sandra – STRAZDIENE, Viktorija – GEIAUTIS, Andrejus – ČAPLOVIČOVÁ, Mária – VRETENÁR, Viliam – WALLS, Michael G. – KROTKUS, Arunas

In Journal of Applied Physics. Vol. 128, iss. 19 (2020)

https://doi.org/10.1063/5.0030091

The GaAs1–xBix semiconductor alloy allows one to achieve large bandgap reduction and enhanced spin–orbit splitting energy at dilute Bi quantities. The bismide is currently being developed for near- to mid-infrared lasers, multi-junction solar cells, and photodetectors. In this structure–property relationship study of GaAsBi alloys, we report polarization dependent photoluminescence that reaches a polarization ratio up to 2.4 at room temperature. Polarization dependence is also presented using transmittance spectra, birefringence, and linear dichroism. The optical anisotropy observations agree with the predictions of point symmetry reduction in the CuPtB-type ordered GaAsBi phase. The structural ordering is investigated experimentally from the atomic scale in molecular-beam epitaxy (MBE) grown samples on exact and miscut (001) GaAs substrates, as well as on (001) Ge. The latter sample is composed of anti-phase domains in which the ordering axes are rotated by 90° angles. Since the conditions stabilizing the CuPtB ordered phase fall within the typical MBE growth regime of dilute bismides, the optical anisotropy in GaAsBi alloys is expected to be ubiquitous. These findings are important for the future development of GaAsBi-based optoelectronics and also provide new means to analyze structurally complex bismide alloys.

Dehydroaromatization of methane over Mo/ZSM-5 zeolites: influence of aluminum distribution in the crystals

HORŇÁČEK, Michal – HUDEC, Pavol – JORÍK, Vladimír – ČAPLOVIČOVÁ, Mária – ČAPLOVIČ, Ľubomír – KALIŇÁK, Michal – SMIEŠKOVÁ, Agáta

https://doi.org/10.1007/s11144-020-01887-5

Abstract

Mo/ZSM-5 type catalysts based on two ZSM-5 zeolites with comparable crystal morphology, shape and size, Si/Al in bulk (22–23), acidity and amount of Mo (~ 4.7 wt.%) but having a different (homogeneous and non-homogeneous) Al distribution in particles and different acid sites type distribution were investigated in methane dehydroaromatization. From the results follows that Mo is associated with both BAS and LAS in the samples with almost homogenous Al distribution (MoZSM-5/AH). In the case of both samples with non-homogenous Al distribution (MoZSM-5/BH and MoZSM-5/BNH4) Mo preferably associates with BAS. Evidently lower activity and selectivity of Mo/ZSM-5/AH catalyst in methane transformation compared with Mo/ZSM-5/BH we attribute to the fact that from Mo species which interact with Lewis acid sites in sample ZSM-5/AH less active carburized species are formed as from the Mo associated with Brønsted sites in sample ZSM-5/BH.

Ag-modified LiMn2O4 cathode for lithium-ion batteries: Coating functionalization

ABBAS, Somia M. – HASHEM, Ahmed M. – ABDEL-GHANY, Ashraf E. – ISMAIL, Eman H. – KOTLÁR, Mário – WINTER, Martin – LI, Jie – JULIEN, Christian M.

In Energies [Open access]. Vol. 13, iss. 19 (2020)

https://doi.org/10.3390/en13195194

Abstract

In this work, the properties of silver-modified LiMn2O4 cathode materials are revisited. We study the influence of calcination atmosphere on the properties of the Ag-coated LiMn2O4 (Ag/LMO) and highlight the silver oxidation. The effect of the heat treatment in vacuum is compared with that in air by the characterization of the structure, specific surface area, Li transport properties and electrochemical performance of Ag/LMO composites. Surface analyses (XPS and Raman spectroscopy) show that the nature of the coating (~3 wt.%) differs with the calcination atmosphere: Ag/LMO(v) calcined in vacuum displays Ag nanospheres and minor AgO content on its surface (specific surface area of 4.1 m2 g−1), while Ag/LMO(a) treated in air is mainly covered by the AgO insulating phase (specific surface area of 0.6 m2 g−1). Electrochemical experiments emphasize that ~3 wt.% Ag coating is effective to minimize the drawbacks of the spinel LiMn2O4 (Mn dissolution, cycling instability, etc.). The Ag/LMO(v) electrode shows high capacity retention, good cyclability at C/2 rate and capacity fade of 0.06% per cycle (in 60 cycles).

Toward BaSi2/Si Heterojunction Thin-Film Solar Cells: Insights into Heterointerface Investigation, Barium Depletion, and Silicide-Mediated Silicon Crystallization

TIAN, Yilei – MONTES, Ana Rita Bento – VANČO, Ľubomír – ČAPLOVIČOVÁ, Mária – VOGRINČIČ, Peter – SUTTA, Pavol – SATRAPINSKYY, Leonid – ZEMAN, Miro – ISABELLA, Olindo

In Advanced Materials Interfaces. Vol. 7, iss. 19 (2020)

https://doi.org/10.1002/admi.202000887

Abstract

The knowledge of the structural and compositional details of Si/BaSi2/Si heterostructure annealed at high temperature is a prerequisite for BaSi2 application in heterojunction thin-film solar cells. For this purpose, Si/BaSi2/Si heterostructures deposited by magnetron sputtering with different Si layer thickness are submitted to systematic structural and compositional characterizations. Results reveal a BaSi2/Si heterointerfacial variation caused by surface oxidation and Ba diffusion at the high temperature. Its effects on the optical and electrical properties of Si/BaSi2/Si heterostructure are presented. The outcomes of this work can be extended to BaSi2 deposited by other techniques, and generate substantial advantages in BaSi2 development ranging from improvement on material qualities and eventual deployment in thin-film solar cells.

Collapse Mechanism in Few-Layer MoS2 Langmuir Films

BODÍK, Michal – DEMYDENKO, Maksym – SHABELNYK, Tetiana – HALAHOVETS, Yuriy – KOTLÁR, Mário – KOSTIUK, Dmytro – SHAJI, Ashin – BRUNOVÁ, Alica – VEIS, Pavel – JERGEL, Matej – MAJKOVÁ, Eva – ŠIFFALOVIČ, Peter

In Journal of Physical Chemistry C. Vol. 124, iss. 29 (2020)

https://doi.org/10.1021/acs.jpcc.0c02365

Abstract

Recent advances in the liquid-phase exfoliation enabled large-scale production of two-dimensional (2D) materials, including few-layer graphene and transition metal dichalcogenides. The exfoliated flakes of 2D materials allow cost-effective deposition of continuous films for various applications ranging from optoelectronics to lubrication technology. The self-assembly of 2D materials on water subphase and subsequent transfer of such a Langmuir film onto a solid substrate offers an unprecedented layer quality in terms of spatial homogeneity as it proceeds in thermodynamic equilibrium. However, while the formation of conventional organic molecular Langmuir films has been widely studied, the application of the Langmuir technique to rigid inorganic 2D materials is still rather unexplored. Here, we study the underlying mechanism behind the formation and collapse at the critical surface pressure of the Langmuir film composed of few-layer MoS2 flakes. The in situ wide-angle X-ray scattering measured in real time and other supportive techniques applied ex situ after the film transfer onto a Si/SiO2 substrate were employed. We identify all principal compression stages up to the Langmuir monolayer collapse and beyond, relying on the texture, surface pressure, and elastic modulus temporal evolution. The results obtained and the conclusions drawn can be extended to a large family of the inorganic Langmuir films of other 2D materials to optimize the deposition process for envisaged application.