Tailored Langmuir-Schaefer Deposition of Few-Layer MoS2 Nanosheet Films for Electronic Applications

KALOSI, Anna – DEMYDENKO, Maksym – BODÍK, Michal – HAGARA, Jakub – KOTLÁR, Mário – KOSTIUK, Dmytro – HALAHOVETS, Yurily – VÉGSÖ, Karol – ROLDAN, Alicia Marin – MAURYA, Gulab Singh – ANGUŠ, Michal – VEIS, Pavel – JERGEL, Matej – MAJKOVÁ, Eva – ŠIFFALOVIČ, Peter

In Langmuir. Vol. 35, iss. 30 (2019)



Few-layer MoS2 films stay at the forefront of current research of two-dimensional materials. At present, continuous MoS2 films are prepared by chemical vapor deposition (CVD) techniques. Herein, we present a cost-effective fabrication of the large-area spatially uniform films of few-layer MoS2 flakes using a modified Langmuir–Schaefer technique. The compression of the liquid-phase exfoliated MoS2 flakes on the water subphase was used to form a continuous layer, which was subsequently transferred onto a submerged substrate by removing the subphase. After vacuum annealing, the electrical sheet resistance dropped to a level of 10 kΩ/sq, being highly competitive with that of CVD-deposited MoS2 nanosheet films. In addition, a consistent fabrication protocol of the large-area conductive MoS2 films was established. The morphology and electrical properties predetermine these films to advanced detecting, sensing, and catalytic applications. A large number of experimental techniques were used to characterize the exfoliated few-layer MoS2 flakes and to elucidate the formation of the few-layer MoS2 Langmuir film.