Author: Mario Kotlár

Microstructure, Mechanical and Tribological Properties of Advanced Layered WN/MeN (Me = Zr, Cr, Mo, Nb) Nanocomposite Coatings

Smyrnova K., Sahul M., Haršáni M., Pogrebnjak A., Ivashchenko V., Beresnev V., Stolbovoy V., Čaplovič L., Čaplovičová M., Vančo L., Kusý M., Kassymbaev A., Satrapinskyy L., Flock D.

Nanomaterials, 12 (3), art. no. 395

https://doi.org/10.3390/nano12030395

Abstract

Due to the increased demands for drilling and cutting tools working at extreme machining conditions, protective coatings are extensively utilized to prolong the tool life and eliminate the need for lubricants. The present work reports on the effect of a second MeN (Me = Zr, Cr, Mo, Nb) layer in WN-based nanocomposite multilayers on microstructure, phase composition, and mechanical and tribological properties. The WN/MoN multilayers have not been studied yet, and cathodic-arc physical vapor deposition (CA-PVD) has been used to fabricate studied coating systems for the first time. Moreover, first-principles calculations were performed to gain more insight into the properties of deposited multilayers. Two types of coating microstructure with different kinds of lattices were observed: (i) face-centered cubic (fcc) on fcc-W2N (WN/CrN and WN/ZrN) and (ii) a combination of hexagonal and fcc on fcc-W2N (WN/MoN and WN/NbN). Among the four studied systems, the WN/NbN had superior properties: the lowest specific wear rate (1.7 × 10−6 mm3/Nm) and high hardness (36 GPa) and plasticity index H/E (0.93). Low surface roughness, high elastic strain to failure, Nb2O5 and WO3 tribofilms forming during sliding, ductile behavior of NbN, and nanocomposite structure contributed to high tribological performance. The results indicated the suitability of WN/NbN as a protective coating operating in challenging conditions. 

Combined in Situ Photoluminescence and X-ray Scattering Reveals Defect Formation in Lead-Halide Perovskite Films

Nada Mrkyvkova*, Vladimír Held, Peter Nádaždy, Riyas Subair, Eva Majkova, Matej Jergel, Aleš Vlk, Martin Ledinsky, Mário Kotlár, Jianjun Tian, Peter Siffalovic

Phys. Chem. Lett. 2021, 12, 41, 10156–10162

https://doi.org/10.1021/acs.jpclett.1c02869

Abstract

Lead-halide perovskites have established a firm foothold in photovoltaics and optoelectronics due to their steadily increasing power conversion efficiencies approaching conventional inorganic single-crystal semiconductors. However, further performance improvement requires reducing defect-assisted, nonradiative recombination of charge carriers in the perovskite layers. A deeper understanding of perovskite formation and associated process control is a prerequisite for effective defect reduction. In this study, we analyze the crystallization kinetics of the lead-halide perovskite MAPbI3–xClx during thermal annealing, employing in situ photoluminescence (PL) spectroscopy complemented by lab-based grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ GIWAXS measurements are used to quantify the transition from a crystalline precursor to the perovskite structure. We show that the nonmonotonous character of PL intensity development reflects the perovskite phase volume, as well as the occurrence of the defects states at the perovskite layer surface and grain boundaries. The combined characterization approach enables easy determination of defect kinetics during perovskite formation in real-time.

Formation of CuCrCoFeNiO high entropy alloy thin films by rapid thermal processing of Cu/CrNiO/FeCo multilayers.

Formation of CuCrCoFeNiO high entropy alloy thin films by rapid thermal processing of Cu/CrNiO/FeCo multilayers.

Wang, Anni; Oliva Ramírez, Manuel; Caplovicova, Maria; Vretenar, Viliam; Böttcher, Julius; Hopfeld, Marcus; Kups, Thomas; Flock, Dominik; Schaaf, Peter

Surface and coatings technology, ISSN 0257-8972, 405 (2021), 126563

doi.org/10.1016/j.surfcoat.2020.126563

Abstract

This study presents the synthesis of High Entropy Alloy (HEA) films starting from elemental Cu and binary alloy CoFe and CrNiO multilayers, followed by rapid thermal processing (RTP). By that, the HEA films (HEAFs) were formed by phase formation via short-range and fast diffusion processes. Multilayers with a total thickness of 760 nm consisting of 16 repetitions of a Cu (11 nm)/CrNiO (16.5 nm)/CoFe (20 nm) sequence were annealed at temperatures from 600 °C to 1000 °C for 5 min. The reaction products were then analyzed by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM) combined with electron energy loss spectroscopy (EELS), in order to identify the phase transformations and elemental distributions. A duplex FCC structure containing CrCoFeNiO HEA and pure Cu phase was successfully synthesized at 600 °C and 800 °C by the solid-state reaction. CuCrCoFeNiO HEA formed within in a Cu nanocrystalline matrix. As the annealing temperature increased, the oxygen content in the films decreased, Both HEA and Cu possess significant 〈111〉 preferred orientation. The HEA phase demonstrated a typical microstructure of alloys with intensive nano-twins. Moreover, the grain growth kinetics of the HEA phase was evaluated, and the activation energy was found to be 185(10) kJ/mol. This is comparable to that of conventional stainless steel (~150 kJ/mol) and less than half of the value for CrCoFeNi bulk (434 kJ/mol). A surface energy-driven grain growth mechanism of the HEAFs via multilayer alloy formation is proposed in this study. The mechanical properties, hardness and Young’s modulus, were measured via nanoindentation, and the strengthening mechanism was proposed and compared with current literature.

Ag-modified LiMn2O4 cathode for lithium-ion batteries: Coating functionalization

ABBAS, Somia M. – HASHEM, Ahmed M. – ABDEL-GHANY, Ashraf E. – ISMAIL, Eman H. – KOTLÁR, Mário – WINTER, Martin – LI, Jie – JULIEN, Christian M.

In Energies [Open access]. Vol. 13, iss. 19 (2020)

https://doi.org/10.3390/en13195194

Abstract

In this work, the properties of silver-modified LiMn2O4 cathode materials are revisited. We study the influence of calcination atmosphere on the properties of the Ag-coated LiMn2O4 (Ag/LMO) and highlight the silver oxidation. The effect of the heat treatment in vacuum is compared with that in air by the characterization of the structure, specific surface area, Li transport properties and electrochemical performance of Ag/LMO composites. Surface analyses (XPS and Raman spectroscopy) show that the nature of the coating (~3 wt.%) differs with the calcination atmosphere: Ag/LMO(v) calcined in vacuum displays Ag nanospheres and minor AgO content on its surface (specific surface area of 4.1 m2 g−1), while Ag/LMO(a) treated in air is mainly covered by the AgO insulating phase (specific surface area of 0.6 m2 g−1). Electrochemical experiments emphasize that ~3 wt.% Ag coating is effective to minimize the drawbacks of the spinel LiMn2O4 (Mn dissolution, cycling instability, etc.). The Ag/LMO(v) electrode shows high capacity retention, good cyclability at C/2 rate and capacity fade of 0.06% per cycle (in 60 cycles).

Collapse Mechanism in Few-Layer MoS2 Langmuir Films

BODÍK, Michal – DEMYDENKO, Maksym – SHABELNYK, Tetiana – HALAHOVETS, Yuriy – KOTLÁR, Mário – KOSTIUK, Dmytro – SHAJI, Ashin – BRUNOVÁ, Alica – VEIS, Pavel – JERGEL, Matej – MAJKOVÁ, Eva – ŠIFFALOVIČ, Peter

In Journal of Physical Chemistry C. Vol. 124, iss. 29 (2020)

https://doi.org/10.1021/acs.jpcc.0c02365

Abstract

Recent advances in the liquid-phase exfoliation enabled large-scale production of two-dimensional (2D) materials, including few-layer graphene and transition metal dichalcogenides. The exfoliated flakes of 2D materials allow cost-effective deposition of continuous films for various applications ranging from optoelectronics to lubrication technology. The self-assembly of 2D materials on water subphase and subsequent transfer of such a Langmuir film onto a solid substrate offers an unprecedented layer quality in terms of spatial homogeneity as it proceeds in thermodynamic equilibrium. However, while the formation of conventional organic molecular Langmuir films has been widely studied, the application of the Langmuir technique to rigid inorganic 2D materials is still rather unexplored. Here, we study the underlying mechanism behind the formation and collapse at the critical surface pressure of the Langmuir film composed of few-layer MoS2 flakes. The in situ wide-angle X-ray scattering measured in real time and other supportive techniques applied ex situ after the film transfer onto a Si/SiO2 substrate were employed. We identify all principal compression stages up to the Langmuir monolayer collapse and beyond, relying on the texture, surface pressure, and elastic modulus temporal evolution. The results obtained and the conclusions drawn can be extended to a large family of the inorganic Langmuir films of other 2D materials to optimize the deposition process for envisaged application.

A bioconjugated MoS2 based nanoplatform with increased binding efficiency to cancer cells

KÁLOSI, Anna – LABUDOVÁ, Martina – ANNUŠOVÁ, Adriana – BENKOVIČOVÁ, Monika – BODÍK, Michal – KOLLÁR, Jozef – KOTLÁR, Mário – KASAK, Peter – JERGEL, Matej – PASTOREKOVÁ, Sylvia – ŠIFFALOVIČ, Peter – MAJKOVÁ, Eva

In Biomaterials Science. Vol. 8, iss. 7 (2020)

https://doi.org/10.1039/C9BM01975H

Abstract

We evaluate the application of surfactant-free liquid-phase exfoliated MoS2 nanosheets as a nanoplatform for a cancer detection and treatment system equipped with an antibody–antigen based recognition element. Employing antigen–antibody binding, we increased the probability of the endocytosis of MoS2 nanosheets into CAIX expressing cells by 30%. The nanosheets are functionalized with a specific antibody M75, which forms an antigen–antibody complex with CAIX. The bioconjugation of MoS2 nanosheets involves biocompatible components with low cytotoxicity, verified in the tested cell lines by fluorescence-based cell viability assay. The cellular internalization is quantified by flow cytometry, while the internalization is confirmed by label-free confocal Raman imaging. Raman measurements show increased lysosomal activity in the proximity of the internalized nanoplatforms.

GaAs1-xBix growth on Ge: anti-phase domains, ordering, and exciton localization

PAULAUSKAS, Tadas – PACEBUTAS, Vaidas – GEIZUTIS, Andrejus – STANIONYTE, Sandra – DUDUTIENE, Evelina – SKAPAS, Martynas – NAUJOKAITIS, Arnas – STRAZDIENE, Viktorija – CECHAVICIUS, Bronislovas – ČAPLOVIČOVÁ, Mária – VRETENÁR, Viliam – JAKIELA, Rafal – KROTKUS, Arunas

In Scientific Reports. Vol. 10, iss. 1 (2020)

https://doi.org/10.1038/s41598-020-58812-y

Abstract

The dilute bismide alloy GaAs1-xBix has drawn significant attention from researchers interested in its fundamental properties and the potential for infrared optoelectronics applications. To extend the study of bismides, molecular-beam heteroepitaxy of nominally 1.0 eV bandgap bismide on Ge substrates is comprehensively investigated. Analysis of atomic-resolution anti-phase domain (APD) images in the direct-epitaxy revealed a high-density of Ga vacancies and a reduced Bi content at their boundaries. This likely played a key role in the preferential dissolution of Bi atoms from the APD interiors and Bi spiking in Ge during thermal annealing. Introduction of GaAs buffer on offcut Ge largely suppressed the formation of APDs, producing high-quality bismide with single-variant CuPtB-type ordered domains as large as 200 nm. Atomic-resolution X-ray imaging showed that 2-dimensional Bi-rich (111) planes contain up to x = 9% Bi. The anomalously early onset of localization found in the temperature-dependent photoluminescence suggests enhanced interactions among Bi states, as compared to non-ordered samples. Growth of large-domain single-variant ordered GaAs1-xBix films provides new prospects for detailed analysis of the structural modulation effects and may allow to further tailor properties of this alloy for optoelectronic applications.

Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells

SUBAIR, Riyas – GIROLAMOC,  Diego Di – BODIK, Michal – NÁDAŽDY, Vojtech – LI, Bo – NÁDAŽDY, Peter – MARKOVIČ, Zoran – BENKOVIČOVÁ, Monika – CHLPÍK, Juraj – KOTLÁR, Mário – HALAHOVETS, Yurily – ŠIFFALOVIČ, Peter – JERGEL, Matej – TIANE, Jianjun – BRUNETTI, Francesca – MAJKOVÁ, Eva

In Solar Energy. Vol. 189, (2019)

https://doi.org/10.1016/j.solener.2019.07.088

Abstract

The doping effect of carbon nanodots (CNDs) in the PC61BM electron-transport layer on the performance of inverted planar MAPbI3 perovskite solar cells (PSCs) having two different kinds of the hole-transport layer, namely organic PEDOT:PSS and inorganic NiOx, was investigated. The CH3NH3PbI3 perovskite layer was deposited in air at 35% humidity. An average 11% and 12% enhancement of the power conversion efficiency (PCE) was achieved for 1 wt% CNDs doping in the PSCs with PEDOT:PSS and NiOx, respectively. This improvement is attributed to high electron density of CNDs resulting in a triple increase of the electrical conductivity of the PC61BM layer and passivation of the perovskite/PC61BM interface that is reflected by an increase of the open-circuit voltage. In line with this, parallel resistance and fill factor of the PSCs are also improved. Moreover, the energy-resolved electrochemical impedance spectroscopy revealed additional free-charge carriers in the PC61BM layer generated under illumination that were detected via the polaron states formation in the band gap with positive effect on the short-circuit current. All these factors contribute to the PCE improvement. Stability tests of the PSC with PEDOT:PSS under a continuous 24 hour 1.5 AM illumination showed a five times smaller final PCE decrease for the 1 wt% CNDs doping of the PC61BM layer comparing to the undoped counterpart. The passivation effect of CNDs, namely electron filling the traps formed by the photo-dimerization and photo-oxidation of PC61BM molecules, is responsible for this remarkable improvement of the short-term stability.

Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation

Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation

Semir Tulić, Thomas Waitz, Mária Čaplovičová, Gerlinde Habler, Marián Varga, Mário Kotlár, Viliam Vretenár, Oleksandr Romanyuk, Alexander Kromka, Bohuslav Rezek, Viera Skákalová

ACS Nano, 2019, 1344621-4630

doi.org/10.1021/acsnano.9b00692

Abstract

Aberration-corrected transmission electron microscopy of the atomic structure of diamond–graphite interface after Ni-induced catalytic transformation reveals graphitic planes bound covalently to the diamond in the upright orientation. The covalent attachment, together with a significant volume expansion of graphite transformed from diamond, gives rise to uniaxial stress that is released through plastic deformation. We propose a comprehensive model explaining the Ni-mediated transformation of diamond to graphite and covalent bonding at the interface as well as the mechanism of relaxation of uniaxial stress. We also explain the mechanism of electrical transport through the graphitized surface of diamond. The result may thus provide a foundation for the catalytically driven formation of graphene–diamond nanodevices.