Autor Viliam Vretenár

Oil Adsorption Behavior of N-doped, Co-decorated Graphene/Carbon Nanotube/Cellulose Microfiber Aerogels: A Comprehensive Investigation of Composite Component’s Effect

Fahimeh Gholami, Arash Ghazitabar, Malek Naderi, Aylar Hoviatdoost, Delasa Ali Jani Ashna, Kiarash Ghazitabar, Bogumił Brycki, Viliam Vretenár

In: Surfaces and Interfaces, (2024)


In this study, N-doped cobalt-decorated graphene/carbon nanotube/cellulose microfiber composite aerogels were synthesised and used as oil sorbent. In the current approach, graphene aerogel nanocomposites containing carbon nanotubes and cellulose microfibres were synthesised through a chemical reduction process using ascorbic acid and sodium bisulphite as reducing agents. Subsequently, N-doping was performed using ammonium treatment. The microstructure of these composites was characterised by field emission and conventional scanning electron microscopy, and transmission electron microscopy measurements. The molecular bonding and composition of the composites were analysed using energy-dispersive spectroscopy, Fourier Transform Infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The hydrophobicity of the composites was characterised by a water contact angle test. Finally, the oil sorption performance of the samples was evaluated through a self-design procedure based on a combination of ASTM F716 and 726 standards and Bazargan et al. report. The N-doped Co decorated graphene/carbon nanotube/cellulose microfiber sample with a GO:CNT:CMF mass ratio of 4:2:1 (CGCMF-24) demonstrated the highest hydrophobicity and oil sorption capacity in comparison with other samples. CGCMF-24 adsorbed up to 30, 44, and 54 g/g toluene, cyclohexane, and hexane, respectively. Meanwhile, the most durable adsorbent was CGCMF-24, with 74% durability after five sorption-desorption cycles, and it maintained this capacity for up to 10 cycles.

Type-II CdSe/ZnO Core/Shell Nanorods: Nanoheterostructures with A Tunable Dual Emission in Visible and Near-Infrared Spectral Ranges

Anamul Haque, Filip Zechel, Viliam Vretenár, Mrinmoy Roy, Milan Sýkora

In: Adv. Funct. Mater. 2023, 2305296


A synthesis and characterization of luminescent nano-heterostructures consisting of CdSe nanorod (NR) cores and a ZnO shell with up to three monolayers of ZnO is reported. The core/shell heterostructures show a tunable, dual photoluminescence (PL) in visible and Near Infrared (NIR) spectral ranges. Upon shelling the visible PL band attributed to the carrier recombination within the CdSe core shifts to lower energy by ≈0.05 to 0.15 eV relative to the bare CdSe NRs, due to a reduced quantum confinement. A NIR band, observed ≈0.4 – 0.5 eV below the PL energy of the CdSe core, is attributed to a type-II carrier recombination across the CdSe/ZnO interface. The total PL quantum yield (PLQY) in the brightest heterostructures reaches ≈20%, increasing ≈100-fold over the PLQY of the corresponding bare CdSe NRs. The average lifetimes of the visible PL in some heterostructures exceeds 100 ns, compared to ≈5 ns lifetime typical for bare CdSe NRs. The average PL lifetimes attributed to the type-II charge separated states exceed one microsecond. Strong NIR PL, tunable in the 800–900 nm spectral range and the long-lived charge separated state make the CdSe/ZnO core-shell NRs appealing materials for exploitation in applications such as bioimaging, photocatalysis and optoelectronics.

Green Colloidal Synthesis of MoS2 Nanoflakes

Filip Zechel, Peter Hutár, Viliam Vretenár, Karol Végsö, Peter Šiffalovič, and Milan Sýkora

In: Inorg. Chem. 2023, 62, 40, 16554–16563


Currently, two approaches dominate the large-scale production of MoS2: liquid-phase exfoliation, referred to as the top-down approach, and bottom-up colloidal synthesis from molecular precursors. Known colloidal synthesis approaches utilize toxic precursors. Here, an alternative green route for the bottom-up synthesis of MoS2 nanoflakes (NFs) is described. The NFs were synthesized by colloidal synthesis using [Mo(CH3COO)2]2 and a series of sulfur (S)-precursors including thioacetamide (TAA), 3-mercaptopropionic acid (3-MPA), l-cysteine (L-CYS), mercaptosuccinic acid (MSA), 11-mercaptoundecanoic acid (MUA), 1-dodecanethiol (DDTH), and di-tert-butyl disulfide (DTBD). While TAA, an S-precursor most commonly used for MoS2 NF preparation, is a known carcinogen, the other investigated S-precursors have low or no known toxicity. High-resolution scanning transmission electron microscopy (HR-STEM) and grazing incidence wide-angle X-ray scattering (GIWAXS) confirmed that in all cases, the syntheses yielded single-layer MoS2 NFs with lateral sizes smaller than 15 nm and a well-defined crystal structure. Electronic absorption and Raman spectra showed characteristic features associated with the MoS2 monolayers. The evolution of the absorption spectra of the growth solution during the syntheses reveals how the kinetics of the NF formation is affected by the S-precursor as well as the nature of the coordinating ligands.

Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber

Tadas Paulauskas, Vaidas Pačebutas, Viktorija Strazdienė, Andrejus Geižutis, Jan Devenson, Mindaugas Kamarauskas, Martynas Skapas, Rokas Kondrotas, Mantas Drazdys, Matas Rudzikas, Benjaminas Šebeka, Viliam Vretenár, Arūnas Krotkus

In: Discover Nano. Vol. 18, iss. 1 (2023)

 doi: 10.1186/s11671-023-03865-x


Group III-V semiconductor multi-junction solar cells are widely used in concentrated-sun and space photovoltaic applications due to their unsurpassed power conversion efficiency and radiation hardness. To further increase the efficiency, new device architectures rely on better bandgap combinations over the mature GaInP/InGaAs/Ge technology, with Ge preferably replaced by a 1.0 eV subcell. Herein, we present a thin-film triple-junction solar cell AlGaAs/GaAs/GaAsBi with 1.0 eV dilute bismide. A compositionally step-graded InGaAs buffer layer is used to integrate high crystalline quality GaAsBi absorber. The solar cells, grown by molecular-beam epitaxy, achieve 19.1% efficiency at AM1.5G spectrum, 2.51 V open-circuit voltage, and 9.86 mA/cm2 short-circuit current density. Device analysis identifies several routes to significantly improve the performance of the GaAsBi subcell and of the overall solar cell. This study is the first to report on multi-junctions incorporating GaAsBi and is an addition to the research on the use of bismuth-containing III-V alloys in photonic device applications.

Polarization dependent photoluminescence and optical anisotropy in CuPtB-ordered dilute GaAs1-xBi xalloys

PAULAUSKAS, Tadas – ACEECHAVIČIUS, Bronislovas – KARPUS, Vytautas – JOČIONIS, Lukas – TUMĖNAS, Saulius – DEVENSON, Jan – PAČ̌EBUTAS, Vaidas – STANIONYTE, Sandra – STRAZDIENE, Viktorija – GEIAUTIS, Andrejus – ČAPLOVIČOVÁ, Mária – VRETENÁR, Viliam – WALLS, Michael G. – KROTKUS, Arunas

In Journal of Applied Physics. Vol. 128, iss. 19 (2020)

The GaAs1–xBix semiconductor alloy allows one to achieve large bandgap reduction and enhanced spin–orbit splitting energy at dilute Bi quantities. The bismide is currently being developed for near- to mid-infrared lasers, multi-junction solar cells, and photodetectors. In this structure–property relationship study of GaAsBi alloys, we report polarization dependent photoluminescence that reaches a polarization ratio up to 2.4 at room temperature. Polarization dependence is also presented using transmittance spectra, birefringence, and linear dichroism. The optical anisotropy observations agree with the predictions of point symmetry reduction in the CuPtB-type ordered GaAsBi phase. The structural ordering is investigated experimentally from the atomic scale in molecular-beam epitaxy (MBE) grown samples on exact and miscut (001) GaAs substrates, as well as on (001) Ge. The latter sample is composed of anti-phase domains in which the ordering axes are rotated by 90° angles. Since the conditions stabilizing the CuPtB ordered phase fall within the typical MBE growth regime of dilute bismides, the optical anisotropy in GaAsBi alloys is expected to be ubiquitous. These findings are important for the future development of GaAsBi-based optoelectronics and also provide new means to analyze structurally complex bismide alloys.

Atomic-Resolution EDX, HAADF, and EELS Study of GaAs1-xBix Alloys

PAULAUSKAS, Tadas – PACEBUTAS, Vaidas – BUTKUTE, Renata – ČECHAVIČIUS, Bronislovas – NAUJOKAITIS, Arnas – KAMARAUSKAS, Mindaugas – SKAPAS, Martynas – DEVENSON, Jan – ČAPLOVIČOVÁ, Mária – VRETENÁR, Viliam – LIU, Xiaoyan – KOCIAK, Mathieu – KROTKUS, Arunas

In Nanoscale Research Letters. Vol. 15, iss. 1 (2020)


The distribution of alloyed atoms in semiconductors often deviates from a random distribution which can have significant effects on the properties of the materials. In this study, scanning transmission electron microscopy techniques are employed to analyze the distribution of Bi in several distinctly MBE grown GaAs1−xBix alloys. Statistical quantification of atomic-resolution HAADF images, as well as numerical simulations, are employed to interpret the contrast from Bi-containing columns at atomically abrupt (001) GaAs-GaAsBi interface and the onset of CuPt-type ordering. Using monochromated EELS mapping, bulk plasmon energy red-shifts are examined in a sample exhibiting phase-separated domains. This suggests a simple method to investigate local GaAsBi unit-cell volume expansions and to complement standard X-ray-based lattice-strain measurements. Also, a single-variant CuPt-ordered GaAsBi sample grown on an offcut substrate is characterized with atomic scale compositional EDX mappings, and the order parameter is estimated. Finally, a GaAsBi alloy with a vertical Bi composition modulation is synthesized using a low substrate rotation rate. Atomically, resolved EDX and HAADF imaging shows that the usual CuPt-type ordering is further modulated along the [001] growth axis with a period of three lattice constants. These distinct GaAsBi samples exemplify the variety of Bi distributions that can be achieved in this alloy, shedding light on the incorporation mechanisms of Bi atoms and ways to further develop Bi-containing III-V semiconductors.

GaAs1-xBix growth on Ge: anti-phase domains, ordering, and exciton localization

PAULAUSKAS, Tadas – PACEBUTAS, Vaidas – GEIZUTIS, Andrejus – STANIONYTE, Sandra – DUDUTIENE, Evelina – SKAPAS, Martynas – NAUJOKAITIS, Arnas – STRAZDIENE, Viktorija – CECHAVICIUS, Bronislovas – ČAPLOVIČOVÁ, Mária – VRETENÁR, Viliam – JAKIELA, Rafal – KROTKUS, Arunas

In Scientific Reports. Vol. 10, iss. 1 (2020)


The dilute bismide alloy GaAs1-xBix has drawn significant attention from researchers interested in its fundamental properties and the potential for infrared optoelectronics applications. To extend the study of bismides, molecular-beam heteroepitaxy of nominally 1.0 eV bandgap bismide on Ge substrates is comprehensively investigated. Analysis of atomic-resolution anti-phase domain (APD) images in the direct-epitaxy revealed a high-density of Ga vacancies and a reduced Bi content at their boundaries. This likely played a key role in the preferential dissolution of Bi atoms from the APD interiors and Bi spiking in Ge during thermal annealing. Introduction of GaAs buffer on offcut Ge largely suppressed the formation of APDs, producing high-quality bismide with single-variant CuPtB-type ordered domains as large as 200 nm. Atomic-resolution X-ray imaging showed that 2-dimensional Bi-rich (111) planes contain up to x = 9% Bi. The anomalously early onset of localization found in the temperature-dependent photoluminescence suggests enhanced interactions among Bi states, as compared to non-ordered samples. Growth of large-domain single-variant ordered GaAs1-xBix films provides new prospects for detailed analysis of the structural modulation effects and may allow to further tailor properties of this alloy for optoelectronic applications.

A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application

COSSUTTA, Matteo – VRETENÁR, Viliam – CENTENO, Teresa A. – KOTRUSZ, Peter – MCKECHNIE, Jon – PICKERING, Stephen J.

In Journal of Cleaner Production. Vol. 242, iss. 1 (2020)


Graphene shows substantial promise in improving the technical performance of a range of applications. For its development and before its potential mass adoption, it is critical to understand the associated cradle-to-grave life cycle environmental impacts. Previous studies on graphene environmental performance do not include end of life and the potential environmental credits generated by graphene reuse. This study undertakes a cradle-to-grave approach to evaluating graphene applications, considering a case study of supercapacitors manufactured with graphene and activated carbon active materials. The analysis includes active materials commercial-size production, supercapacitors production, supercapacitors use phase in an automotive application, and their end of life in which both devices are recycled. With current material performance and energy mixes, the graphene-based supercapacitor would increase impacts in all environmental categories analysed, ranging from 27% higher human toxicity to 213% greater ozone depletion and showing a 48% increase in GHG emissions. This unfavourable result arises due to the tested graphene material exhibiting inferior specific capacitance to the activated carbon comparator, as well as a more energy-intensive production process. Prospective analysis considers hypothetical performance where both active materials reach their theoretical specific capacitance, and the decarbonisation of electricity generation. The environmental impacts of both the activated carbon and graphene supercapacitors are reduced in these prospective scenarios, with the graphene based supercapacitor becoming the least impacting solution due to its lower active material requirements. The graphene-based device shows 36% lower GHG emission and overall shows lower impacts ranging from 14% less mineral, fossil and renewable resource depletion to 43% less photochemical ozone formation. These results support graphene as a valid candidate material for substituting activated carbon in supercapacitors provided graphene technical performance is improved, production optimised, and recycling developed.

Biomass waste-carbon/reduced graphene oxide composite electrodes for enhanced supercapacitors

GUARDIA, Laura – SUÁREZ, Loreto – QUEREJETA, Nausika – VRETENÁR, Viliam – KOTRUSZ, Peter – SKÁKALOVÁ, Viera – CENTENO, Teresa A.

In Electrochimica Acta. Vol. 298, iss. 3 (2019)


We present a simple and effective alternative which optimizes electrodes based on low-cost carbons for high-performance supercapacitors. The combination with reduced graphene oxide (rGO) greatly improves the operation of microporous carbons easily produced by one-pot activation of grape seeds. The use of composite electrodes with rGO lowers the supercapacitor resistance and enables a much higher rate capability.

The mixture of rGO flakes and particles of a highly porous carbon obtained by KOH activation allows retaining the high capacitance of 260 F g−1 of the standard electrodes at 1 mA cm−2 in aqueous H2SO4 whereas the value at 200 mA cm−2 is increased by around 2.4 times. Consequently, at high current density, the capacitor assembled with these composites stores eight times more energy and the power density is multiplied by four.

The synergy between rGO and an ultramicroporous carbon produced by CO2-activation results extremely profitable, the cell assembled with composite electrodes reaching three times more energy and power at 200 mA cm−2 than the best performance of the standard counterpart.

More importantly, the higher density of the composite electrodes leads to a capacitance of around 200 F cm−3 which translates into a remarkable improvement in the supercapacitor operation normalized to volume.

Chemical Oxidation of Graphite: Evolution of the Structure and Properties

SKÁKALOVÁ, Viera – KOTRUSZ, Peter – JERGEL, Matej – SUSI, Toma – MITTELBERGER, Andreas – VRETENÁR, Viliam – ŠIFFALOVIČ, Peter – KOTAKOSKI, J. – MEYER, Jannik C. – HULMAN, Martin

In Journal of Physical Chemistry C. Vol. 122, iss. 1 (2018)


Graphene oxide is a complex material whose synthesis is still incompletely understood. To study the time evolution of structural and chemical properties of oxidized graphite, samples at different temporal stages of oxidation were selected and characterized through a number of techniques: X-ray photoelectron spectroscopy for the content and bonding of oxygen, X-ray diffraction for the level of intercalation, Raman spectroscopy for the detection of structural changes, electrical resistivity measurements for probing charge localization on the macroscopic scale, and scanning transmission electron microscopy for the atomic structure of the graphene oxide flakes. We found a nonlinear behavior of oxygen uptake with time where two concentration plateaus were identified: Uptake reached 20 at % in the first 15 min, and after 1 h a second uptake started, reaching a highest oxygen concentration of >30 at % after 2 h of oxidation. At the same time, the interlayer distance expanded to more than twice the value of graphite and the electrical resistivity increased by seven orders of magnitude. After 4 days of chemical processing, the expanded structure of graphite oxide became unstable and spontaneously exfoliated; more than 2 weeks resulted in a significant decrease in the oxygen content accompanied by reaggregation of the GO sheets. These correlated measurements allow us to offer a comprehensive view into the complex oxidation process.