Rok: 2023

Electrochemical modified Pt nanoflower @ rGO for non- enzymatic electrochemical sensing of glucose

Saravanan Gengan, R.M. Gnanamuthu, Sanjay Sankaranarayanan, Venumbaka Maneesh Reddy, Bhanu Chandra Marepally, Ravi Kumar Biroju

In: Sensors and Actuators A: Physical, Volume 353, (2023)


Since lower danger of biorecognition element degradation, enzymes-less glucose have the potential for more reliable in vivo activity, but it suffers due to lack of linear response and poor selectivity. We made attempt to improve selectivity, linear response and stability, environmentally benign electrochemical method adopted to fabricate Pt nanoflowers (PtNF) anchored on rGO modified GCE (PtNF-rGO/GCE). The PtNF-rGO/GCE electrode demonstrated good glucose electrooxidation in alkaline solution, with a linear range, sensitivity and detection limit are up to 3.5 mM, 335.5 μA mM−1 cm−1 and 53 μM (S/N = 3) respectively. The PtNF-rGO/GCE electrode is not only selective also inhibit interfering molecules like uric, dopamine, ascorbic acid. This allows for broadly sensitive, work at low-potential, stable, and quick glucose current detection, which is capable for the expansion of non-enzymatic glucose detectors.

Defective Graphene/Plasmonic Nanoparticle Hybrids for Surface-Enhanced Raman Scattering Sensors

Biroju Ravi K., Marepally Bhanu Chandra, Malik Pariksha, Dhara Soumen, Gengan Saravanan, Maity Dipak, Narayanan Tharangattu N., Giri Pravat K.

ACS Omega 2023, 8, 4, 4344–4356, (2023)


Two-dimensional–zero-dimensional plasmonic hybrids involving defective graphene and transition metals (DGR-TM) have drawn significant interest due to their near-field plasmonic effects in the wide range of the UV–vis–NIR spectrum. In the present work, we carried out extensive investigations on resonance Raman spectroscopy (RRS) and localized surface plasmon resonance (LSPR) from the various DGR-TM hybrids (Au, Ag, and Cu) using micro-Raman, spatial Raman mapping analysis, high-resolution transmission electron microscopy (HRTEM), and LSPR absorption measurements on defective CVD graphene layers. Further, electric field (E) mappings of samples were calculated using the finite domain time difference (FDTD) method to support the experimental findings. The spatial distribution of various in-plane and edge defects and defect-mediated interaction of plasmonic nanoparticles (NPs) with graphene were investigated on the basis of the RRS and LSPR and correlated with the quantitative analysis from HRTEM, excitation wavelength-dependent micro-Raman, and E-field enhancement features of defective graphene and defective graphene-Au hybrids before and after rapid thermal annealing (RTA). Excitation wavelength-dependent surface-enhanced Raman scattering (SERS) and LSPR-induced broadband absorption from DGR-Au plasmonic hybrids reveal the electron and phonon interaction on the graphene surface, which leads to the charge transfer from TM NPs to graphene. This is believed to be responsible for the reduction in the SERS signal, which was observed from the wavelength-dependent Raman spectroscopy/mappings. We implemented defective graphene and DGR-Au plasmonic hybrids as efficient SERS sensors to detect the Fluorescein and Rhodamine 6G molecules with a detection limit down to 10–9 M. Defective graphene and Au plasmonic hybrids showed an impressive Raman enhancement in the order of 108, which is significant for its practical application.