Category: Articles

Synthesis of Sulfide Perovskites by Sulfurization with Boron Sulfides

BYSTRICKÝ, Roman – TIWARI, Sameer K. – HUTÁR, Peter – VANČO, Ľubomír – SÝKORA, Milan.

In Inorganic Chemistry. Vol. 61, iss. 47 (2022)

https://doi.org/10.1021/acs.inorgchem.2c03200

Abstract

Chalcogenide perovskites (CPs), with the general composition ABX3, where A and B are metals and X = S and Se, have recently emerged as promising materials for application in photovoltaics. However, the development of CPs and their applications has been hindered by the limitations of available preparation methods. Here we present a new approach for the synthesis of CPs, based on the sulfurization of ternary and binary oxides or carbonates with in situ formed boron sulfides. In contrast to the previously described approaches, the method presented here uses chemically stable starting materials and yields pure-phase crystalline CPs within several hours, under low hazard conditions. CP yields over 95% are obtained at temperatures as low as 600 °C. The generality of the approach is demonstrated by the preparation of CPs with compositions BaZrS3, β-SrZrS3, BaHfS3, SrHfS3, and EuHfS3. Mechanistic insights about the formation of CPs are discussed.

Raman spectroscopy of silicon with nanostructured surface

KADLEČÍKOVÁ, Magdaléna – VANČO, Ľubomír – BREZA, Juraj – MIKOLÁŠEK, Miroslav – HUŠEKOVÁ, Kristína – FRÖHLICH, Karol – PROCEL, Paul – ZEMAN, Miro – ISABELLA, Olindo

In Optik. Vol. 257, (2022)

https://doi.org/10.1016/j.ijleo.2022.168869

Abstract

We compared the morphology and Raman response of nanoscale shaped surfaces of Si substrates versus monocrystalline Si. Samples were structured by reactive ion etching, and four of them were covered by a RuO2-IrO2 layer. Raman bands, centred at approx. 520 cm–1, belonging to samples processed by etching the Si surface have intensities higher by approximately one order of magnitude than those of reference non-etched samples. For nanostructured samples, the rise in the Raman signal was 12–14 × , which is in agreement with the model of the electric field at the tips of Si due to their geometry. This phenomenon is related to the high absorption of excitation radiation. Nanostructured surfaces of samples containing a layer of RuO2-IrO2 give rise to the phenomenon of surface enhancement of the Raman response most likely due to the charge transfer at the interface between silicon and conductive oxides. The nanostructured surface of Si without a metal layer behaves as a SERS substrate and detects the analytes at a low concentration.

Mesoporous SnO2 Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells

ULLAH, Sami – FARAZ, Muhammad Ud Din – KHAN, Kasi Jafar – KHAN, Kasi Ajab – VÉGSÖ, Karol – KOTLÁR, Mário – MIČUŠÍK, Matej – JERGEL, Matej – NÁDAŽDY, Vojtech – ŠIFFALOVIČ, Peter – MAJKOVÁ, Eva – FAKHARUDDIN, Azhar

In ACS Applied Nano Materials. Vol. 5, iss. 6 (2022)

https://doi.org/10.1021/acsanm.2c00840

Abstract

A perovskite solar cell (PSC) featuring a mesoporous architecture can facilitate perovskite layer formation over a large area via increasing the number of heterogeneous nucleation sites. The morphology of the electron transport layer (ETL) and its interface with the perovskite layer is one of the key factors to boost the performance of a PSC. Tin dioxide (SnO2) is considered as a promising ETL in PSCs owing to its high carrier mobility, good transmittance, deep conduction band level, and efficient photoelectron extraction. Generally, the mesoporous SnO2 (m-SnO2) ETL has a higher surface-to-volume ratio compared to a compact SnO2 layer. Herein, we report on an m-SnO2 ETL prepared by anodizing a metallic tin film on a fluorine-doped tin oxide (FTO) substrate in NaOH solution under an ambient atmosphere. In particular, we developed a bilayer architecture of the m-SnO2 ETL based on the fabrication of two consecutive m-SnO2 layers. The morphology of each layer was controlled by varying the anodization voltage and time at a constant solution concentration during the growth process. This unique approach enabled the deposition of an m-SnO2 ETL with sufficient coverage of the FTO substrate, which is difficult to achieve with a single layer of m-SnO2. In particular, the scanning electron and atomic force microscopy analyses confirmed that the m-SnO2 layer covers completely the FTO substrate. The device fabricated with this bilayer m-SnO2 ETL achieved a 27% improvement in power conversion efficiency compared to that with a single layer of m-SnO2.

Fe3O4-PEI Nanocomposites for Magnetic Harvesting of Chlorella vulgaris, Chlorella ellipsoidea, Microcystis aeruginosa, and Auxenochlorella protothecoides

GERULOVÁ, Kristína – KUCMANOVÁ, Alexandra – SANNY, Zuzana – GARAIOVÁ, Zuzana – SEILER, Eugen – ČAPLOVIČOVÁ, Mária – ČAPLOVIČ, Ľubomír – PALCUT, Marián

In Nanomaterials. Vol. 12, iss. 11 (2022)

https://doi.org/10.3390/nano12111786

Abstract

Magnetic separation of microalgae using magnetite is a promising harvesting method as it is fast, reliable, low cost, energy-efficient, and environmentally friendly. In the present work, magnetic harvesting of three green algae (Chlorella vulgaris, Chlorella ellipsoidea, and Auxenochlorella protothecoides) and one cyanobacteria (Microcystis aeruginosa) has been studied. The biomass was flushed with clean air using a 0.22 μm filter and fed CO2 for accelerated growth and faster reach of the exponential growth phase. The microalgae were harvested with magnetite nanoparticles. The nanoparticles were prepared by controlled co-precipitation of Fe2+ and Fe3+ cations in ammonia at room temperature. Subsequently, the prepared Fe3O4 nanoparticles were coated with polyethyleneimine (PEI). The prepared materials were characterized by high-resolution transmission electron microscopy, X-ray diffraction, magnetometry, and zeta potential measurements. The prepared nanomaterials were used for magnetic harvesting of microalgae. The highest harvesting efficiencies were found for PEI-coated Fe3O4. The efficiency was pH-dependent. Higher harvesting efficiencies, up to 99%, were obtained in acidic solutions. The results show that magnetic harvesting can be significantly enhanced by PEI coating, as it increases the positive electrical charge of the nanoparticles. Most importantly, the flocculants can be prepared at room temperature, thereby reducing the production costs.

Contribution of photocatalytic and Fenton-based processes in nanotwin structured anodic TiO2 nanotube layers modified by Ce and V

THIRUNAVUKKARASU,  Guru Karthikeyan – GOWRISANKARAN, Sridhar – ČAPLOVIČOVÁ, Mária – SATRAPINSKYY, Leonid – GREGOR, Maroš – LAVRIKOVA, Aleksandra Y. – GREGUŠ, Ján – HALKO, Radoslav – PLESCH, Gustav – MOTOLA, Martin – MONFORT, Olivier

In Dalton Transactions. Vol. 51, iss. 28 (2022)

https://doi.org/10.1039/D2DT00829G

Abstract

In the present work, nanotwin structured TiO2 nanotube (TNT) layers are prepared by the electrochemical anodization technique to form the anatase phase and by surface modification via spin-coating of Ce and V precursors to form Ce-TNT and V-TNT, respectively. The surface and cross-sectional images by SEM revealed that the nanotubes have an average diameter of ∼130 nm and a length of ∼14 μm. In addition, the TEM images revealed the nanotwin structures of the nanotubes, especially the anatase (001) and (112) twin surfaces, that increase the transport of photogenerated charges. The photoinduced degradation of caffeine (CAF) by TNT, Ce-TNT, and V-TNT led to a degradation extent of 16%, 26% and 33%, respectively, whereas it increased to 26%, 38%, and 46% in the presence of H2O2, owing to the involvement of Fenton-based processes (in addition to photocatalysis). The effect of the Fenton-based processes accounts for about 10% of the total degradation extent of CAF. Finally, the mechanism of the photoinduced degradation of CAF was investigated. The main oxidative species were the hydroxyl radicals, and the better efficiency of V-TNT over Ce-TNT and TNT was ascribed to its negative surface, thus improving the interactions with CAF.

Ni-Fe Cathode Catalyst in Zero-Gap Alkaline Water Electrolysis

ZÁCHENSKÁ, Jana – JORÍK, Vladimír – VANČO, Ľubomír – MIČUŠÍK, Matej – ZEMANOVÁ, Matilda

In Electrocatalysis. Vol. 13, iss. 4 (2022)

https://doi.org/10.1007/s12678-022-00734-6

Abstract

Ni–Fe cathode catalyst for zero-gap alkaline water electrolysis was studied. Ni–Fe coatings on nickel foam were prepared by direct current (DC) and pulse current (PC) electrodeposition. The influence of different plating conditions and composition of the electrolyte on the morphology of the samples was studied. It was found that under DC electrodeposition, iron is dominant in the coating. Under PC plating conditions, Ni is the dominant element in Ni–Fe coatings. Ni–Fe coatings prepared under DC electrodeposition provide an effective catalyst in zero-gap electrolysis. Increasing Fe content in the coatings improves the catalytic activity of Ni–Fe catalyst. The study of convenient parameters of PC electrodeposition seems to be complex to reach a highly active surface area.

Microstructure, Mechanical and Tribological Properties of Advanced Layered WN/MeN (Me = Zr, Cr, Mo, Nb) Nanocomposite Coatings

Smyrnova K., Sahul M., Haršáni M., Pogrebnjak A., Ivashchenko V., Beresnev V., Stolbovoy V., Čaplovič L., Čaplovičová M., Vančo L., Kusý M., Kassymbaev A., Satrapinskyy L., Flock D.

Nanomaterials, 12 (3), art. no. 395

https://doi.org/10.3390/nano12030395

Abstract

Due to the increased demands for drilling and cutting tools working at extreme machining conditions, protective coatings are extensively utilized to prolong the tool life and eliminate the need for lubricants. The present work reports on the effect of a second MeN (Me = Zr, Cr, Mo, Nb) layer in WN-based nanocomposite multilayers on microstructure, phase composition, and mechanical and tribological properties. The WN/MoN multilayers have not been studied yet, and cathodic-arc physical vapor deposition (CA-PVD) has been used to fabricate studied coating systems for the first time. Moreover, first-principles calculations were performed to gain more insight into the properties of deposited multilayers. Two types of coating microstructure with different kinds of lattices were observed: (i) face-centered cubic (fcc) on fcc-W2N (WN/CrN and WN/ZrN) and (ii) a combination of hexagonal and fcc on fcc-W2N (WN/MoN and WN/NbN). Among the four studied systems, the WN/NbN had superior properties: the lowest specific wear rate (1.7 × 10−6 mm3/Nm) and high hardness (36 GPa) and plasticity index H/E (0.93). Low surface roughness, high elastic strain to failure, Nb2O5 and WO3 tribofilms forming during sliding, ductile behavior of NbN, and nanocomposite structure contributed to high tribological performance. The results indicated the suitability of WN/NbN as a protective coating operating in challenging conditions. 

Effect of Multiply Twinned Ag(0) Nanoparticles on Photocatalytic Properties of TiO2 Nanosheets and TiO2 Nanostructured Thin Films

BAKARDJIEVA, Snejana – MAREŠ, Jakub – KOCI, Eva – TOLASZ, Jakub – FAJGAR, Radek – RYUKHTIN, Vasyl – KLEMENTOVÁ, Mariana – MICHNA, Štefan – BIBOVÁ, Hana – HOLMESTAD, Randi – TITORENKOVA, Rositsa – ČAPLOVIČOVÁ, Mária.

In Nanomaterials. Vol. 12, iss. 5 (2022)

https://doi.org/10.3390/nano12050750

Abstract

Ag-decorated TiO2 nanostructured materials are promising photocatalysts. We used non-standard cryo-lyophilization and ArF laser ablation methods to produce TiO2 nanosheets and TiO2 nanostructured thin films decorated with Ag nanoparticles. Both methods have a common advantage in that they provide a single multiply twinned Ag(0) characterized by {111} twin boundaries. Advanced microscopy techniques and electron diffraction patterns revealed the formation of multiply twinned Ag(0) structures at elevated temperatures (500 °C and 800 °C). The photocatalytic activity was demonstrated by the efficient degradation of 4-chlorophenol and Total Organic Carbon removal using Ag-TiO2 nanosheets, because the multiply twinned Ag(0) served as an immobilized photocatalytically active center. Ag-TiO2 nanostructured thin films decorated with multiply twinned Ag(0) achieved improved photoelectrochemical water splitting due to the additional induction of a plasmonic effect. The photocatalytic properties of TiO2 nanosheets and TiO2 nanostructured thin films were correlated with the presence of defect-twinned structures formed from Ag(0) nanoparticles with a narrow size distribution, tuned to between 10 and 20 nm. This work opens up new possibilities for understanding the defects generated in Ag-TiO2 nanostructured materials and paves the way for connecting their morphology with their photocatalytic activity.

Structural Breakdown of Natural Epidote and Clinozoisite in High-T and Low-P Conditions and Characterization of Its Products

Kozáková, P.; Miglierini, M.; Čaplovičová, M.; Škoda, R.; Bačík, P.

Minerals 202212, 238

https://doi.org/10.3390/min12020238

Abstract

A heat treatment was performed on selected epidote and clinozoisite crystals to establish the nature of any changes in the optical and crystal-chemical properties and to identify a breakdown product using a wide spectrum of analytical methods. Natural samples were heated from 900 to 1200 °C under atmospheric pressure in ambient oxidation conditions for 12 h. Epidote and clinozoisite were stable at 900 °C; those heated at 1000 °C, 1100 °C, and 1200 °C exhibited signs of breakdown, with the development of cracks and fissures. The average chemical composition of epidote is Ca2.000Al2.211Fe0.742Si2.994O12(OH), while that of clinozoisite is Ca2.017A12.626Fe0.319Si3.002O12(OH). The breakdown products identified by electron microanalysis, powder X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy were anorthite, pyroxene compositionally close to esseneite, and wollastonite. The decomposition of the epidote-clinozoisite solid solution is controlled by the following reaction: 4 epidote/clinozoisite → 2 pyroxene + 2 wollastonite + 4 anorthite + 2 H2O. Pyroxene likely contains a significant proportion of tetrahedral Fe3+ as documented by the Mössbauer spectroscopy. Moreover, the presence of hematite in the Mössbauer spectrum of the clinozoisite sample heated at 1200 °C can result from the following reaction: 4 epidote → pyroxene + 3 wollastonite + 4 anorthite + hematite + 2 H2O. 

Catalytic graphitization of single-crystal diamond

Catalytic graphitization of single-crystal diamond

SemirTulić, ThomasWaitz, MáriaČaplovičová, GerlindeHabler, ViliamVretenár, TomaSusi, VieraSkákalová

Carbon, Volume 185, 2021, 300-313

https://doi.org/10.1016/j.carbon.2021.08.082

Abstract

Diamond and graphene are carbon allotropes with starkly different physical characteristics. Their combination into graphene-on-diamond heterostructures could benefit from the complementary properties of both components. Graphitization of single-crystalline diamond surfaces is a promising synthesis route, but a clear understanding of the growth of graphene or graphite from solid carbon sources is so far missing. Using aberration-corrected transmission electron microscopyRaman spectroscopy, and electrical transport measurements, we provide detailed insight in the mechanisms of structural changes of nickel-catalyzed graphitization of diamond. We propose competing atomistic processes occurring at contact sites of diamond and Ni, depending on diamond surface terminations. One-dimensional etching process dominates on (111) diamond surfaces that remain almost atomically flat during graphitization. Two-dimensional etching of (110) and (100) diamond surfaces results in Ni drilling into the diamond substrate. Our findings also provide evidence on the reaction rates of the catalysis. The most reactive diamond surface in the (100) orientation is covered with the largest amount of well-crystallized graphite, whereas the (111) surface shows the highest stability against catalytic etching. In the latter case, only a thin disordered graphite layer is formed, yielding the lowest electric conductance. By clarifying these etching mechanisms, our results can improve the synthesis of graphene-on-diamond heterostructures.